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Preface

To the Student
As you begin this course, I invite you to think about your rea-
sons for enrolling in it. Why are you taking general chemis-
try? More generally, why are you pursuing a college education? 
If you are like most college students taking general chemistry, 
part of your answer is probably that this course is required for 
your major and that you are pursuing a college education so 
you can get a good job some day. Although these are good rea-
sons, I would like to suggest a better one. I think the primary 
reason for your education is to prepare you to live a good life. 
You should understand chemistry—not for what it can get 
you—but for what it can do to you. Understanding chemistry, 
I believe, is an important source of happiness and fulfillment. 
Let me explain.

Understanding chemistry helps you to live life to its full-
est for two basic reasons. The first is intrinsic: through an 
understanding of chemistry, you gain a powerful apprecia-
tion for just how rich and extraordinary the world really is. 
The second reason is extrinsic: understanding chemistry 
makes you a more informed citizen—it allows you to engage 
with many of the issues of our day. In other words, under-
standing chemistry makes you a deeper and richer person and 
makes your country and the world a better place to live. These 
reasons have been the foundation of education from the very 
beginnings of civilization.

How does chemistry help prepare you for a rich life and 
conscientious citizenship? Let me explain with two exam-
ples. My first one comes from the very first page of Chapter 1 
of this book. There, I ask the following question: What is the 
most important idea in all of scientific knowledge? My answer 
to that question is this: the behavior of matter is deter-
mined by the properties of molecules and atoms. That 
simple statement is the reason I love chemistry. We humans 
have been able to study the substances that compose the 
world around us and explain their behavior by reference to 
particles so small that they can hardly be imagined. If you 
have never realized the remarkable dependence of the world 
we can see on the world we cannot, you have missed out on a 
fundamental truth about our universe. To have never encoun-
tered this truth is like never having read a play by Shakespeare 
or seen a sculpture by Michelangelo—or, for that matter, like 
never having discovered that the world is round. It robs you 
of an amazing and unforgettable experience of the world and 
the human ability to understand it.

My second example demonstrates how science literacy 
helps you to be a better citizen. Although I am largely sympa-
thetic to the environmental movement, a lack of science lit-
eracy within some sectors of that movement and the resulting 

anti-environmental backlash create confusion that impedes 
real progress and opens the door to what could be misin-
formed policies. For example, I have heard conservative pun-
dits say that volcanoes emit more carbon dioxide—the most 
significant greenhouse gas—than does petroleum combus-
tion. I have also heard a liberal environmentalist say that we 
have to stop using hair spray because it is causing holes in the 
ozone layer that will lead to global warming. Well, the claim 
about volcanoes emitting more carbon dioxide than petro-
leum combustion can be refuted by the basic tools you will 
learn to use in Chapter 4 of this book. We can easily show that 
volcanoes emit only 1/50th as much carbon dioxide as petro-
leum combustion. As for hair spray depleting the ozone layer 
and thereby leading to global warming, the chlorofluorocar-
bons that deplete ozone have been banned from hair spray 
since 1978, and ozone depletion has nothing to do with global 
warming anyway. People with special interests or axes to grind 
can conveniently distort the truth before an ill-informed pub-
lic, which is why we all need to be knowledgeable.

So this is why I think you should take this course. Not 
just to satisfy the requirement for your major and not just to 
get a good job some day, but to help you to lead a fuller life 
and to make the world a little better for everyone. I wish you 
the best as you embark on the journey to understanding the 
world around you at the molecular level. The rewards are well 
worth the effort.

To the Professor
First and foremost, thanks to all of you who adopted this book 
in its previous editions. You helped to make this book one of 
the most popular general chemistry textbooks in the world. I 
am grateful beyond words. Second, I have listened carefully to 
your feedback on the previous edition. The changes you see in 
this edition are the direct result of your input, as well as my 
own experience using the book in my general chemistry 
courses. If you have reviewed content or have contacted me 
directly, you will likely see your suggestions reflected in the 
changes I have made. Thank you.

Higher education in science is changing. Foremost 
among those changes is a shift toward active learning. A flood 
of recent studies has demonstrated that General Chemistry 
students learn better when they are active in the learning 
process. However, implementing active learning can be a dif-
ficult and time-consuming process. One of my main goals in 
this revision is to give you, the professor, a range of tools to 
easily implement active learning in your class. My goal is 
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simple: I want to make it easy for you to engage your students in 
active learning before class, during class, and after class.

■ BEFORE CLASS Although the term active learning 
has been applied mainly to in-class learning, the main 
idea—that we learn better when we are actively engaged—
applies to all of learning. I have developed two main 
tools to help students prepare for class in an active way. 
The first tool is a complete library of 3– to 6–minute 
Key Concept Videos (KCVs) that, with this edition, span 
virtually all of the key concepts in a general chemistry 
course. The videos introduce a key concept and encour-
age active learning because they stop in the middle and 
pose a question that must be answered before the video 
continues playing. Each video also has an associated 
follow-up question that can be assigned using Master-
ing Chemistry. You can assign a video before each one 
of your classes to get your students thinking about the 
concepts for that day. A second tool for use before class 
is active reading. Each chapter in the book now contains 
10–12 Conceptual Connection questions. These questions 
are live in the ebook, assignable in Mastering Chemis-
try, and contain wrong answer feedback. Instead of pas-
sively reading the assigned material with no account-
ability, you can now encourage your students to engage 
in active reading, in which they read a bit and then an-
swer a question that probes their comprehension and 
gives them immediate feedback.

■ DURING CLASS By delivering some content through 
key concept videos and active reading before class, you 
can make room in your lecture to pose questions to your 
students that make the class experience active as well. 
This book features two main tools for in-class use. The 
first tool is Learning Catalytics, which allows you to pose 
many different types of questions to your students dur-
ing class. Instead of passively listening to your lecture, 
students interact with the concepts you present through 
questions you pose. Your students can answer the ques-
tions individually, or you can pair them with a partner 
or small group. A second tool for in-class use is the Ques-
tions for Group Work. These questions appear in the end-
of-chapter material and are specifically designed to be 
answered in small groups.

■ AFTER CLASS Active learning can continue after class 
with two additional tools. The first is another library of 
3– to 6–minute videos called Interactive Worked Examples 
(IWEs). Each IWE video walks a student through the 
solution to a chemistry problem. Like the KCVs, the IWE 
video stops in the middle and poses a question that must 
be answered before the video continues playing. Each 
video also has an associated follow-up problem that 
can be assigned using Mastering Chemistry. The second 
tool for after (or outside of) class active learning is Active 
Exam Preparation. Research studies suggest that students 
who take a pretest before an exam do better on the exam, 
especially if the pretest contains immediate feedback. 
Each chapter in this book contains a Self-Assessment Quiz 

that you can use to easily make a pretest for any of your 
exams. The Self-Assessment Quizzes are live in the ebook, 
assignable in Mastering Chemistry, and contain wrong 
answer feedback. Simply choose the questions that you 
want from each of the quizzes that span the chapters on 
your exam, and you can create an assignable pretest that 
students can use to actively prepare for your exams.

Although we have added many active learning tools to this 
edition and made other changes as well, the book’s goal 
remains the same: to present a rigorous and accessible treatment 
of general chemistry in the context of relevance. Teaching general 
chemistry would be much easier if all of our students had 
exactly the same level of preparation and ability. But alas, that 
is not the case. My own courses are populated with students 
with a range of backgrounds and abilities in chemistry. The 
challenge of successful teaching, in my opinion, is figuring 
out how to instruct and challenge the best students while not 
losing those with lesser backgrounds and abilities. My strategy 
has always been to set the bar relatively high, while at the 
same time providing the motivation and support necessary to 
reach the high bar. That is exactly the philosophy of this book. 
We do not have to compromise rigor in order to make chemis-
try accessible to our students. In this book, I have worked hard 
to combine rigor with accessibility—to create a book that does 
not dilute the content and yet can be used and understood by 
any student willing to put in the necessary effort.

Chemistry: A Molecular Approach is first and fore-
most a student-oriented book. My main goal is to moti-
vate students and get them to achieve at the highest possible 
level. As we all know, many students take general chemistry 
because it is a requirement; they do not see the connection 
between chemistry and their lives or their intended careers. 
Chemistry: A Molecular Approach strives to make those connec-
tions consistently and effectively. Unlike other books, which 
often teach chemistry as something that happens only in the 
laboratory or in industry, this book teaches chemistry in the 
context of relevance. It shows students why chemistry is 
important to them, to their future careers, and to their world.

Second, Chemistry: A Molecular Approach is a 
pedagogically driven book. In seeking to develop problem-
solving skills, a consistent approach (Sort, Strategize, Solve, 
and Check) is applied, usually in a two- or three-column for-
mat. In the two-column format, the left column shows the 
student how to analyze the problem and devise a solution 
strategy. It also lists the steps of the solution, explaining the 
rationale for each one, while the right column shows the 
implementation of each step. In the three-column format, 
the left column outlines the general procedure for solving an 
important category of problems that is then applied to two 
side-by-side examples. This strategy allows students to see 
both the general pattern and the slightly different ways in 
which the procedure may be applied in differing contexts. 
The aim is to help students understand both the concept of the 
problem (through the formulation of an explicit conceptual 
plan for each problem) and the solution to the problem.

Third, Chemistry: A Molecular Approach is a 
visual book. Wherever possible, I use images to deepen the 
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student’s insight into chemistry. In developing chemical 
principles, multipart images help show the connection 
between everyday processes visible to the unaided eye and 
what atoms and molecules are actually doing. Many of these 
images have three parts: macroscopic, molecular, and sym-
bolic. This combination helps students to see the relation-
ships between the formulas they write down on paper 
(symbolic), the world they see around them (macroscopic), 
and the atoms and molecules that compose that world 
(molecular). In addition, most figures are designed to teach 
rather than just to illustrate. They are rich with annotations 
and labels intended to help the student grasp the most impor-
tant processes and the principles that underlie them. In this 
edition, the art program has been thoroughly revised in two 
major ways. First, navigation of the more complex figures has 
been reoriented to track from left to right whenever possible. 
Second, figure captions have been migrated into the image 
itself as an “author voice” that explains the image and guides 
the reader through it. The resulting images are rich with 
information but also clear and quickly understood.

Fourth, Chemistry: A Molecular Approach is a 
“big-picture” book. At the beginning of each chapter, a 
short paragraph helps students to see the key relationships 
between the different topics they are learning. Through a 
focused and concise narrative, I strive to make the basic ideas 
of every chapter clear to the student. Interim summaries are 
provided at selected spots in the narrative, making it easier to 
grasp (and review) the main points of important discussions. 
And to make sure that students never lose sight of the forest 
for the trees, each chapter includes several Conceptual Connec-
tions, which ask them to think about concepts and solve 
problems without doing any math. I want students to learn 
the concepts, not just plug numbers into equations to churn 
out the right answer. This philosophy is also integral to the 
Key Concept Videos, which concisely reinforce student appre-
ciation of the core concepts in each chapter.

Lastly, Chemistry: A Molecular Approach is a book 
that delivers the depth of coverage faculty want. We 
do not have to cut corners and water down the material in 
order to get our students interested. We have to meet them 
where they are, challenge them to the highest level of achieve-
ment, and support them with enough pedagogy to allow 
them to succeed.

I hope that this book supports you in your vocation of 
teaching students chemistry. I am increasingly convinced of 
the importance of our task. Please feel free to contact me with 
any questions or comments about the book.

Nivaldo J. Tro
nivatro@gmail.com

What’s New in This Edition?
The book has been extensively revised and contains more 
small changes than can be detailed here. The most significant 
changes to the book and its supplements are listed below:

■ NEW INTERACTIVE VIDEOS I have added 16 new 
Key Concept Videos (KCVs) and 24 new Interactive Worked 

Examples (IWEs) to the media package that accompanies 
the book. The video library now contains nearly 200 inter-
active videos. These tools are designed to help professors 
engage their students in active learning.

■ NEW IN-CHAPTER QUESTIONS WITH FEEDBACK 
I have added approximately 67 new Conceptual Connec-
tion questions throughout the book and have changed 
the format to multiple choice (with wrong answer feed-
back in the ebook or through Mastering Chemistry). 
Each chapter now has 10–12 of these embedded assign-
able questions. These questions transform the reading 
process from passive to active and hold students ac-
countable for reading assignments.

■ NEW MISSED THIS? FEATURE I have added a new 
feature called MISSED THIS? to the Self-Assessment Quiz-
zes and to the Problems by Topic section of the end-of-
chapter problems. This feature lists the resources that 
students can use to learn how to answer the question or 
solve the problem. The resources include chapter sec-
tions to read, Key Concept Videos (KCVs) to watch, and In-
teractive Worked Examples (IWEs) to view. Students often 
try to solve an assigned question or problem before doing 
any reading or reviewing; they seek resources only after 
they have missed the question or problem. The MISSED 
THIS? feature guides them to reliable resources that pro-
vide just-in-time instruction.

■ NEW FOR PRACTICE FEEDBACK I have enhanced 
64 of the in-chapter For Practice problems (which im-
mediately follow an in-chapter worked example) with 
feedback that can be accessed in the ebook or through 
Mastering Chemistry.

■ REVISED ART PROGRAM The art program has been 
extensively revised. Navigation of the more complex fig-
ures has been reoriented to track from left to right, and 
many figure captions have been broken up and have been 
moved into the image itself as an “author voice” that ex-
plains the image and guides the reader through it.

■ REVISED DATA INTERPRETATION AND ANALY-
SIS QUESTIONS The Data Interpretation and Analysis 
questions that accompany each chapter have been exten-
sively revised to make them clearer and more accessible 
to students.

■ NEW SECTION ON DATA INTERPRETATION AND 
ANALYSIS I have added a new section to Chapter 1 
(Section 1.9) on the general topic of analyzing and inter-
preting data. This section introduces the skills required 
to address many of the revised data interpretation and 
analysis questions.

■ NEW HOW TO . . . FEATURE All guidance for essential 
skills such as problem-solving techniques, drawing Lewis 
structures, and naming compounds is now presented in 
a consistent, step-by-step numbered list called How To…

■ REVISED CHAPTER 4 Chapter 4 in the previous edi-
tion covered both stoichiometry and chemical reac-
tions in solution. In this edition, this content has been 
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expanded slightly and has been divided into two more 
focused chapters, so that Chapter 4 is now focused on 
stoichiometry and Chapter 5 on chemical reactions in 
solution. This new organization lessens the cognitive 
load for students and allows each chapter to be more  
direct and focused. All subsequent chapters have been  
renumbered accordingly.

■ NEW ACTIVITY SERIES CONTENT I added a new 
subsection to Section 5.9 entitled The Activity Series: Pre-
dicting Whether a Redox Reaction Is Spontaneous. The new 
section includes new figures, tables, and a new worked 
example.

■ NEW READY-TO-GO LEARNING MODULES These 
online modules offer students easy access to the best 
Tro content in Mastering Chemistry without needing to 
have it assigned.

■ NEW TWO-TIER OBJECTIVES A system of two-tier 
objectives is being applied to the text and to the Master-
ing Chemistry assets. The two tiers are Learning Objec-
tives, or LOs, and Enabling Objectives, or EOs. The LOs 
are broad, high-level objectives that summarize the over-
all learning goal, while the EOs are the building block 
skills that enable students to achieve the LO. The learn-
ing objectives are given in the Learning Outcomes table 
at the end of the chapter.

■ REVISED DATA All the data throughout the book have 
been updated to reflect the most recent measurements 
available. These updates include Figure 4.2: Carbon  
Dioxide in the Atmosphere; Figure 4.3: Global Temperatures; 
the unnumbered figure in Section 7.10 of U.S. Energy Con-
sumption; Figure 7.12: Energy Consumption by Source; Table 
7.6: Changes in National Average Pollutant Levels, 1990–
2016; Figure 15.19: Ozone Depletion in the Antarctic Spring; 
Figure 17.15: Sources of U.S. Energy; Figure 17.16: Acid Rain; 
and Figure 17.18: U.S. Sulfur Dioxide Pollutant Levels.

■ REVISED CHAPTER OPENERS Many chapter- 
opening sections and (or) the corresponding art—
including Chapters 1, 3, 4, 5, 6, 7, 10, 11, 18, 19, 20, and 
22—have been replaced or modified.
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Nivaldo Tro’s Chemistry: A Molecular Approach presents chemistry visually through 
multi-level images—macroscopic, molecular, and symbolic representations—to help students see 
the connections between the world they see around them, the atoms and molecules that compose 
the world, and the formulas they write down on paper. The 5th Edition pairs digital, pedagogical 
innovation with insights from learning design and educational research to create an active, integrated, 
and easy-to-use framework. The new edition introduces a fully integrated book and media package 
that streamlines course setup, actively engages students in becoming expert problem solvers, and makes 
it possible for professors to teach the general chemistry course easily and effectively.

Actively Engage Students to Become Expert 
Problem Solvers and Critical Thinkers
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Learn core concepts...

Key Concept Videos 
combine artwork from 
the textbook with 2D and 
3D animations to create 
a dynamic on-screen 
viewing and learning 
experience. The 5th 
edition includes 16 new 
videos, for a total of 74.

These short videos include 
narration and brief live-
action clips of author 
Nivaldo Tro explaining 
every key concept in 
general chemistry. All 
Key Concept Videos 
are available on mobile 
devices, embedded in 
Pearson eText, and are 
assignable in Mastering 
Chemistry.
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Newly Interactive Conceptual Connections allow students to interact with all conceptual 
connections within the Pearson eText, so that they can study on their own and test their understanding in 
real time. Complete with answer-specific feedback written by the author himself, these interactives help 
students extinguish misconceptions and deepen their understanding of important topics, making reading 
an active experience.

before students even come to class
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With Learning 
Catalytics, you’ll hear 
from every student when 
it matters most. You pose 
a variety of questions 
that help students recall 
ideas, apply concepts, and 
develop critical-thinking 
skills. Your students 
respond using their own 
smartphones, tablets, or 
laptops.

Actively engage students...

You can monitor responses with real-time analytics and find out what your students  
do — and don’t — understand. Then, you can adjust your teaching accordingly, and even 
facilitate peer-to-peer learning, helping students stay motivated and engaged. Learning 
Catalytics includes prebuilt questions for every key topic in General Chemistry.
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with in-class activities

Questions for 
Group Work allow 
students to collaborate 
and apply problem-
solving skills on questions 
covering multiple 
concepts. The questions 
can be used in or out 
of the classroom, and 
the goal is to foster 
collaborative learning 
and encourage students 
to work together as a 
team to solve problems. 
All questions for group 
work are pre-loaded into 
Learning Catalytics for 
ease of assignment.

Numerous ideas for 
in-class activities can 
be found in the Ready-to-
Go Teaching Modules in 
the Instructor Resources 
in Mastering Chemistry. 
There, instructors will 
find the most effective 
activities, problems, and 
questions from the text, 
Mastering, and Learning 
Catalytics, to use in class.

QUESTIONS FOR GROUP WORK Active Classroom Learning

Discuss these questions with the group and record your consensus 
answer.

139. Explain why 1-propanol (CH3CH2CH2OH) is miscible in both 
water (H2O) and hexane (C6H6) when hexane and water are 
barely soluble in each other.

140. Have each group member make a flashcard with one of the 
following on the front: ∆Hsoln, ∆Hlattice, ∆Hsolvent, ∆Hmix, and 
∆Hhydration. On the back of the card, each group member should 
describe (in words) the ∆H process his or her card lists and how 
that ∆H relates to other ∆H values mathematically. Each mem-
ber presents his or her ∆H to the group. After everyone has pre-
sented, members should trade cards and quiz each other.

141. Complete the following table by adding increases, decreases, or 
no e�ect:

Increasing 
Temperature

Increasing 
Pressure

solubility of gas in water

solubility of a solid in water

142. When 13.62 g (about one tablespoon) of table sugar (sucrose, 
C12H22O11) is dissolved in 241.5 mL of water (density 0.997 g/mL), 
the final volume is 250.0 mL (about one cup). Have each group 
member calculate one of the following for the solution and pres-
ent his or her answer to the group:
a. mass percent
b. molarity
c. molality

143. Calculate the expected boiling and freezing point for the solu-
tion in the previous problem. If you had to bring this syrup to 
the boiling point for a recipe, would you expect it to take much 
more time than it takes to boil the same amount of pure water? 
Why or why not? Would the syrup freeze in a typical freezer 
(-18 °C)? Why or why not?

p. 628
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Master problem-solving...

PROBLEMS BY TOPIC
Solution Concentration and Solution Stoichiometry

21. Calculate the molarity of each solution. 
MISSED THIS? Read Section 5.2; Watch KCV 5.2, IWE 5.1
a. 3.25 mol of LiCl in 2.78 L solution
b. 28.33 g C6H12O6 in 1.28 L of solution
c. 32.4 mg NaCl in 122.4 mL of solution

22. Calculate the molarity of each solution.
a. 0.38 mol of LiNO3 in 6.14 L of solution
b. 72.8 g C2H6O in 2.34 L of solution
c. 12.87 mg KI in 112.4 mL of solution

23. What is the molarity of NO3
-  in each solution?  

MISSED THIS? Read Sections 5.2, 5.4; Watch KCV 5.2, IWE 5.1
a. 0.150 M KNO3

b. 0.150 M Ca(NO3)2

c. 0.150 M Al(NO3)3

24. What is the molarity of Cl -  in each solution?
a. 0.200 M NaCl
b. 0.150 M SrCl2

c. 0.100 M AlCl3

25. How many moles of KCl are contained in each solution? 
MISSED THIS? Read Section 5.2; Watch KCV 5.2, IWE 5.2
a. 0.556 L of a 2.3 M KCl solution
b. 1.8 L of a 0.85 M KCl solution
c. 114 mL of a 1.85 M KCl solution

26. What volume of 0.200 M ethanol solution contains each 
amount in moles of ethanol?
a. 0.45 mol ethanol
b. 1.22 mol ethanol
c. 1.2 * 10 - 2 mol ethanol

27. A laboratory procedure calls for making 400.0 mL of a 1.1 M 
NaNO3 solution. What mass of NaNO3 (in g) is needed? 
MISSED THIS? Read Section 5.2; Watch KCV 5.2, IWE 5.2

28. A chemist wants to make 5.5 L of a 0.300 M CaCl2 solution. 
What mass of CaCl2 (in g) should the chemist use?

29. If 123 mL of a 1.1 M glucose solution is diluted to 500.0 mL, 
what is the molarity of the diluted solution? 
MISSED THIS? Read Section 5.2; Watch KCV 5.2, IWE 5.3

30. If 3.5 L of a 4.8 M SrCl2 solution is diluted to 45 L, what is the 
molarity of the diluted solution?

31. To what volume should you dilute 50.0 mL of a 12 M stock 
HNO3 solution to obtain a 0.100 M HNO3 solution? 
MISSED THIS? Read Section 5.2; Watch KCV 5.2, IWE 5.3

32. To what volume should you dilute 25 mL of a 10.0 M H2SO4

solution to obtain a 0.150 M H2SO4 solution?

33. Consider the precipitation reaction: 
MISSED THIS? Read Section 5.3; Watch IWE 5.4

2 Na3PO4(aq) + 3 CuCl2(aq) ¡ Cu3(PO4)2(s) + 6 NaCl(aq)

What volume of 0.175 M Na3PO4 solution is necessary to 
completely react with 95.4 mL of 0.102 M CuCl2?

34. Consider the reaction:

Li2S(aq) + Co(NO3)2(aq) ¡ 2 LiNO3(aq) + CoS(s)

What volume of 0.150 M Li2S solution is required to completely 
react with 125 mL of 0.150 M Co(NO3)2?

35. What is the minimum amount of 6.0 M H2SO4 necessary to 
produce 25.0 g of H2(g) according to the reaction between 
aluminum and sulfuric acid? 
MISSED THIS? Read Section 5.3; Watch IWE 5.4

2 Al(s) + 3 H2SO4(aq) ¡ Al2(SO4)3(aq) + 3 H2(g)

36. What is the molarity of ZnCl2 that forms when 25.0 g of zinc 
completely reacts with CuCl2 according to the following reac-
tion? Assume a final volume of 275 mL.

Zn(s) + CuCl2(aq) ¡ ZnCl2(aq) + Cu(s)

Interactive Worked Examples are digital versions of select worked examples from the text 
that instruct students how to break down problems using Tro’s “Sort, Strategize, Solve, and Check” 
technique. The Interactive Worked Examples pause in the middle and require the student to interact 
by completing a step in the example. Each example has a follow-up question that is assignable in 
Mastering Chemistry. There are 24 new Interactive Worked Examples for a total of 125.

p. 204

NEW! MISSED 
THIS? appears in  
the end-of-chapter 
Self-Assessment 
Quizzes and each 
odd-numbered 
Problems by Topic 
exercise. MISSED 
THIS? provides 
sections to read 
and videos to watch 
to help students 
remediate where 
necessary.
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with tools students can use 
after class

Newly Interactive Self-
Assessment Quizzes, 
complete with answer-specific 
feedback, allow students to quiz 
themselves within the Pearson 
eText, so that they can study 
on their own and test their 
understanding in real time. The 
Self-Assessment Quizzes are 
also assignable in Mastering 
Chemistry. Professors can use 
questions from these quizzes to 
prepare a pretest on Mastering 
Chemistry.  Research has shown 
that this kind of active exam 
preparation improves students' 
exam scores. 

NEW! Ready-to-Go  
Practice Modules 
in the Mastering 
Chemistry Study Area 
help students master 
the toughest topics 
(as identified by 
professors and fellow 
students completing 
homework and 
practicing for 
exams). Key Concept 
Videos, Interactive 
Worked Examples, 
and problem sets 
with answer-specific 
feedback are all in 
one easy to navigate 
place to keep 
students focused 
and give them the 
scaffolded support 
they need to succeed. 
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Extensively updated 
art program better 
directs students’ attention 
to key elements in 
the art and promotes 
understanding of the 
processes depicted. Dozens 
of figures in the 5th 
Edition were reviewed by 
learning design specialists 
to ensure they are clearly 
navigable for students and 
now include more helpful 
annotations and labels to 
help readers focus on key 
concepts.

Teach with art based on learning 
design principles

180 CHAPTER 5 Introduction to Solutions and Aqueous Reactions

The instant that the solutions come into contact, all four ions are present:

KI(aq) and Pb(NO3)2(aq)

Pb2+

I-

K+

NO3
-

Now, new compounds—one or both of which might be insoluble—are possible. Specifi-
cally, the cation from either compound can pair with the anion from the other to form 
possibly insoluble products:

K I KNO3

Pb (NO3)2 PbI2

Original compounds Possible products

If the possible products are both soluble, no reaction occurs and no precipitate forms. If 
one or both of the possible products are insoluble, a precipitation reaction occurs. In 
this case, KNO3 is soluble, but PbI2 is insoluble. Consequently, PbI2 precipitates.

To predict whether a precipitation reaction will occur when two solutions are mixed 
and to write an equation for the reaction, we use the procedure that follows. The steps 
are outlined in the left column, and two examples illustrating how to apply the proce-
dure are shown in the center and right columns.

Precipitation Reaction

2  KI(aq) + Pb(NO3)2(aq)
(soluble)(soluble)

   PbI2(s)        2 KNO3(aq)
(insoluble)       (soluble)

When a potassium iodide solution 
is mixed with a lead(II) nitrate 
solution, a yellow lead(II) iodide 
precipitate forms.

2 KI(aq)
(soluble)

Pb(NO3)2(aq)
(soluble)

2 KNO3(aq)
(soluble)

PbI2(s)
(insoluble)

+

+

K+

I-
Pb2+

NO3
-

+

PbI2

K+

NO3
-

◀ FIGURE 5.13 Precipitation of 
Lead(II) Iodide

Precipitation reactions do not always occur when two aqueous solutions are mixed. For 
example, if we combine solutions of KI(aq) and NaCl(aq), nothing happens (Figure 5.14▶):

KI(aq) + NaCl(aq) ¡ NO REACTION

The key to predicting precipitation reactions is to understand that only insoluble 
compounds form precipitates. In a precipitation reaction, two solutions containing soluble 
compounds combine and an insoluble compound precipitates. Consider the precipita-
tion reaction described previously:

2 KI(aq)
soluble

+ Pb(NO3)2
soluble

(aq) ¡ PbI2(s)
insoluble

+ 2 KNO3(aq)
soluble

KI and Pb(NO3)2 are both soluble, but the precipitate, PbI2, is insoluble. Before mixing, 
KI(aq) and Pb(NO3)2(aq) are both dissociated in their respective solutions:

KI(aq) Pb(NO3)2(aq)

Pb2+

I-

K+
NO3

-

PbI2(s) and KNO3(aq)

PbI2

K+

NO3
-

No Reaction

NaCl(aq)KI(aq) No reaction

K+

I-

I-

Na+

Na+
Cl-

Cl-

K+

+

NaCl(aq)KI(aq) No reaction+

When a potassium iodide 
solution is mixed with a 
sodium chloride solution, 
no reaction occurs.

◀ FIGURE 5.14 No Precipitation

5.5 Precipitation Reactions 181
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Tro’s multipart 
images help students 
see the relationship 
between the formulas 
they write down on paper 
(symbolic), the world 
they see around them 
(macroscopic), and the 
atoms and molecules 
that compose the world 
(molecular).

180 CHAPTER 5 Introduction to Solutions and Aqueous Reactions
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KI(aq) and Pb(NO3)2(aq)

Pb2+

I-

K+

NO3
-

Now, new compounds—one or both of which might be insoluble—are possible. Specifi-
cally, the cation from either compound can pair with the anion from the other to form 
possibly insoluble products:

K I KNO3

Pb (NO3)2 PbI2

Original compounds Possible products

If the possible products are both soluble, no reaction occurs and no precipitate forms. If 
one or both of the possible products are insoluble, a precipitation reaction occurs. In 
this case, KNO3 is soluble, but PbI2 is insoluble. Consequently, PbI2 precipitates.
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are outlined in the left column, and two examples illustrating how to apply the proce-
dure are shown in the center and right columns.
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2  KI(aq) + Pb(NO3)2(aq)
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When a potassium iodide solution 
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Precipitation reactions do not always occur when two aqueous solutions are mixed. For 
example, if we combine solutions of KI(aq) and NaCl(aq), nothing happens (Figure 5.14▶):

KI(aq) + NaCl(aq) ¡ NO REACTION

The key to predicting precipitation reactions is to understand that only insoluble 
compounds form precipitates. In a precipitation reaction, two solutions containing soluble 
compounds combine and an insoluble compound precipitates. Consider the precipita-
tion reaction described previously:

2 KI(aq)
soluble

+ Pb(NO3)2
soluble

(aq) ¡ PbI2(s)
insoluble

+ 2 KNO3(aq)
soluble

KI and Pb(NO3)2 are both soluble, but the precipitate, PbI2, is insoluble. Before mixing, 
KI(aq) and Pb(NO3)2(aq) are both dissociated in their respective solutions:

KI(aq) Pb(NO3)2(aq)

Pb2+

I-

K+
NO3

-

PbI2(s) and KNO3(aq)

PbI2

K+

NO3
-

No Reaction

NaCl(aq)KI(aq) No reaction

K+

I-

I-

Na+

Na+
Cl-

Cl-

K+

+

NaCl(aq)KI(aq) No reaction+

When a potassium iodide 
solution is mixed with a 
sodium chloride solution, 
no reaction occurs.

◀ FIGURE 5.14 No Precipitation

5.5 Precipitation Reactions 181

pgs. 180–181
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W hat do you think is the most important idea in all of 
human knowledge? This question has many possible 
answers—some practical, some philosophical, and some 

scientific. If we limit ourselves to scientific answers, mine would be 
this: the properties of matter are determined by the properties 
of atoms and molecules. Atoms and molecules determine how 
matter behaves—if they were different, matter would be different. 
The properties of water molecules determine how water behaves, 
the properties of sugar molecules determine how sugar behaves, 
and the properties of the molecules that compose our bodies 
determine how our bodies behave. The understanding of matter 
at the molecular level gives us unprecedented control over that 
matter. For example, our understanding of the details of the mole-
cules that compose living organisms has revolutionized biology 
over the last 50 years.

The most 
incomprehensible thing 
about the universe 
is that it is 
comprehensible.
—ALBERT EINSTEIN (1879–1955)

Matter, Measurement, 
and Problem Solving1 
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This image portrays the Disneyland ride, Adventure Thru Inner 
Space. The premise of the ride is that you enter a microscope and 
get shrunk down to the size of an atom. The red and white spheres 
shown here depict oxygen and hydrogen atoms bound together to 
form water molecules.

WATCH NOW!
KEY CONCEPT VIDEO 1.1

Atoms and Molecules
  As I sat in the “omnimover” and listened to the narrator’s voice telling 
me that I was shrinking down to the size of an atom, I grew apprehensive but curious. 
Just minutes before, while waiting in line, I witnessed what appeared to be full-sized 
humans entering a microscope and emerging from the other end many times smaller.  
I was seven years old, and I was about to ride Adventure Thru Inner Space, a Disneyland 
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2 CHAPTER 1 Matter, Measurement, and Problem Solving

ride (in Tomorrowland) that simulated what it would be like to shrink to the size of an 
atom. The ride began with darkness and shaking, but then the shaking stopped and giant 
snowflakes appeared. The narrator explained that you were in the process of shrinking 
to an ever-smaller size (which explains why the snowflakes grew larger and larger). Soon, 
you entered the wall of the snowflake itself and began to see water molecules all around 
you. These also grew larger as you continued your journey into inner space and eventu-
ally ended up within the atom itself. Although this Disneyland ride bordered on being 
corny, and although it has since been shut down, it was my favorite ride as a young child.

That ride sparked my interest in the world of atoms and molecules, an interest that 
has continued and grown to this day. I am a chemist because I am obsessed with the con-
nection between the “stuff” around us and the atoms and molecules that compose that 
stuff. More specifically, I love the idea that we humans have been able to figure out the 
connection between the properties of the stuff around us and the properties of atoms and 
molecules. Atoms are submicroscopic particles that are the fundamental building blocks 
of ordinary matter. Free atoms are rare in nature; instead they bind together in specific 
geometrical arrangements to form molecules. A good example of a molecule is the 
water molecule, which I remember so well from the Disneyland ride.

A water molecule is composed of one oxygen atom bound to two hydrogen atoms in 
the shape shown at left. The exact properties of the water molecule—the atoms that 
compose it, the distances between those atoms, and the geometry of how the atoms are 
bound together—determine the properties of water. If the molecule were different, water 
would be different. For example, if water contained two oxygen atoms instead of just 
one, it would be a molecule like this:

Hydrogen peroxide molecule

Hydrogen
atoms

Oxygen
atoms

This molecule is hydrogen peroxide, which you may have encountered if you have 
ever bleached your hair. A hydrogen peroxide molecule is composed of two oxygen 
atoms and two hydrogen atoms. This seemingly small molecular difference results in a 
huge difference in the properties of water and hydrogen peroxide. Water is the familiar 
and stable liquid we all drink and bathe in. Hydrogen peroxide, in contrast, is an unsta-
ble liquid that, in its pure form, burns the skin on contact and is used in rocket fuel. 
When you pour water onto your hair, your hair simply becomes wet. However, if you put 
diluted hydrogen peroxide on your hair, a chemical reaction occurs that strips your hair 
of its color.

The details of how specific atoms bond to form a molecule—in a straight line, at a 
particular angle, in a ring, or in some other pattern—as well as the type of atoms in the 
molecule, determine everything about the substance that the molecule composes. If we 
want to understand the substances around us, we must understand the atoms and mol-
ecules that compose them—this is the central goal of chemistry. A good simple defini-
tion of chemistry is

Chemistry—the science that seeks to understand the behavior of 
matter by studying the behavior of atoms and molecules.

Throughout this book, we explore the connection between atoms and molecules and 
the matter they compose. We seek to understand how differences on the atomic or 
molecular level affect the properties on the macroscopic level. Before we move on, let’s 
examine one more example that demonstrates this principle. Consider the structures of 
graphite and diamond.

Hydrogen
atoms

Oxygen
atom

Water molecule

The hydrogen peroxide we use as 
an antiseptic or bleaching agent is 
considerably diluted.

The term atoms in this definition can 
be interpreted loosely to include 
atoms that have lost or gained 
electrons.
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 1.2 The Scientific Approach to Knowledge 3

Graphite is the slippery black substance (often 
called pencil lead) that you have probably used in a 
mechanical pencil. Diamond is the brilliant gemstone 
found in jewelry. Graphite and diamond are both com-
posed of exactly the same atoms—carbon atoms. The 
striking differences between the substances are a result 
of how those atoms are arranged. In graphite, the 
atoms are arranged in sheets. The atoms within each 
sheet are tightly bound to each other, but the sheets are 
not tightly bound to other sheets. Therefore the sheets 
can slide past each other, which is why the graphite in 
a pencil leaves a trail as you write. In diamond, by con-
trast, the carbon atoms are all bound together in a 
three-dimensional structure where layers are strongly 
bound to other layers, resulting in the strong, nearly 
unbreakable substance. This example illustrates how 
even the same atoms can compose vastly different sub-
stances when they are bound together in different pat-
terns. Such is the atomic and molecular world—small 
differences in atoms and molecules can result in large 
differences in the substances that they compose.

 1.2 The Scientific Approach to Knowledge
  Throughout history, humans have approached knowledge about the phys-
ical world in different ways. For example, the Greek philosopher Plato (427–347 b.c.e.) 
thought that the best way to learn about reality was—not through the senses—but 
through reason. He believed that the physical world was an imperfect representation of 
a perfect and transcendent world (a world beyond space and time). For him, true knowl-
edge came, not through observing the real physical world, but through reasoning and 
thinking about the ideal one.

The scientific approach to knowledge, however, is exactly the opposite of Plato’s. 
Scientific knowledge is empirical—it is based on observation and experiment. Scientists 
observe and perform experiments on the physical world to learn about it. Some observa-
tions and experiments are qualitative (noting or describing how a process happens), but 
many are quantitative (measuring or quantifying something about the process). For 
example, Antoine Lavoisier (1743–1794), a French chemist who studied combustion 
(burning), made careful measurements of the mass of objects before and after burning 
them in closed containers. He noticed that there was no change in the total mass of 
material within the container during combustion. In doing so, Lavoisier made an 
important observation about the physical world.

Observations often lead scientists to formulate a hypothesis, a tentative interpre-
tation or explanation of the observations. For example, Lavoisier explained his observa-
tions on combustion by hypothesizing that when a substance burns, it combines with a 
component of air. A good hypothesis is falsifiable, which means that it makes predic-
tions that can be confirmed or refuted by further observations. Scientists test hypotheses 
by experiments, highly controlled procedures designed to generate observations that 
confirm or refute a hypothesis. The results of an experiment may support a hypothesis 
or prove it wrong—in which case the scientist must modify or discard the hypothesis.

In some cases, a series of similar observations leads to the development of a scientific 
law, a brief statement that summarizes past observations and predicts future ones. 
Lavoisier summarized his observations on combustion with the law of conservation 
of mass, which states, “In a chemical reaction, matter is neither created nor destroyed.” 
This statement summarized his observations on chemical reactions and predicted the 
outcome of future observations on reactions. Laws, like hypotheses, are also subject to 
experiments, which can support them or prove them wrong.

Graphite structure Diamond structure

Although some Greek philosophers, 
such as Aristotle, did use observation 
to attain knowledge, they did 
not emphasize experiment and 
measurement to the extent that 
modern science does.

▲ French chemist Antoine Lavoisier 
with his wife, Marie, who helped 
him in his work by illustrating his 
experiments and translating scientific 
articles from English. Lavoisier, who 
also made significant contributions 
to agriculture, industry, education, 
and government administration, 
was executed during the French 
Revolution.  
(The Metropolitan Museum of Art)

M01_TRO4371_01_SE_C01_002-047v3.0.1.indd   3 15/11/18   12:33 PM



4 CHAPTER 1 Matter, Measurement, and Problem Solving

Scientific laws are not laws in the same sense as civil or governmental laws. Nature 
does not follow laws in the way that we obey the laws against speeding or running a stop 
sign. Rather, scientific laws describe how nature behaves—they are generalizations about 
what nature does. For that reason, some people find it more appropriate to refer to them 
as principles rather than laws.

One or more well-established hypotheses may form the basis for a scientific theory. 
A scientific theory is a model for the way nature is and tries to explain not merely what 
nature does but why. As such, well-established theories are the pinnacle of scientific 
knowledge, often predicting behavior far beyond the observations or laws from which 
they were developed. A good example of a theory is the atomic theory proposed by 
English chemist John Dalton (1766–1844). Dalton explained the law of conservation of 
mass, as well as other laws and observations of the time, by proposing that matter is 
composed of small, indestructible particles called atoms. Since these particles are merely 
rearranged in chemical changes (and not created or destroyed), the total amount of mass 
remains the same. Dalton’s theory is a model for the physical world—it gives us insight 
into how nature works and, therefore, explains our laws and observations.

Finally, the scientific approach returns to observation to test theories. For example, 
scientists can test the atomic theory by trying to isolate single atoms or by trying to 
image them (both of which, by the way, have already been accomplished). Theories are 
validated by experiments; however, theories can never be conclusively proven because 
some new observation or experiment always has the potential to reveal a flaw. Notice 
that the scientific approach to knowledge begins with observation and ends with obser-
vation. An experiment is in essence a highly controlled procedure for generating critical 
observations designed to test a theory or hypothesis. Each new set of observations has 
the potential to refine the original model. Figure 1.1▼ summarizes one way to map the 
scientific approach to knowledge. Scientific laws, hypotheses, and theories are all sub-
ject to continued experimentation. If a law, hypothesis, or theory is proved wrong by an 
experiment, it must be revised and tested with new experiments. Over time, the scien-
tific community eliminates or corrects poor theories and laws, and valid theories and 
laws—those consistent with experimental results—remain.

Established theories with strong experimental support are the most powerful pieces 
of scientific knowledge. You may have heard the phrase “That is just a theory,” as if theo-
ries are easily dismissible. Such a statement reveals a deep misunderstanding of the 
nature of a scientific theory. Well-established theories are as close to truth as we get in 
science. The idea that all matter is made of atoms is “just a theory,” but it has over  
200 years of experimental evidence to support it. It is a powerful piece of scientific 
knowledge on which many other scientific ideas are based.

One last word about the scientific approach to knowledge: some people wrongly 
imagine science to be a strict set of rules and procedures that automatically leads to inar-
guable, objective facts. This is not the case. Even our diagram of the scientific approach 
to knowledge is only an idealization of real science, useful to help us see the key distinc-
tions of science. Real science requires hard work, care, creativity, and even a bit of luck. 

In Dalton’s time, people thought 
atoms were indestructible. Today, 
because of nuclear reactions, we 
know that atoms can be broken apart 
into their smaller components.

Test

Confirm

(or revise law)

Confirm

(or revise hypothesis)

Confirm

(or revise theory)

Test

Test

Hypothesis

Law

Theory

Observations Experiments Experiments

The Scientific Approach

▼ FIGURE 1.1 The Scientific 
Approach to Knowledge 
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 1.3 The Classification of Matter 5

Scientific theories do not just arise out of data—men and women of genius and creativ-
ity craft theories. A great theory is not unlike a master painting, and many see a similar 
kind of beauty in both. (For more on this aspect of science, see the accompanying box 
entitled Thomas S. Kuhn and Scientific Revolutions.)

THE NATURE OF SCIENCE |

W hen scientists talk about science, they often talk in ways 
that imply that theories are “true.” Further, they talk as 
if they arrive at theories in logical and unbiased ways. 

For example, a theory central to chemistry that we have 
discussed in this chapter is John Dalton’s atomic theory—the 
idea that all matter is composed of atoms. Is this theory “true”? 
Was it reached in logical, unbiased ways? Will this theory still be 
around in 200 years?

The answers to these questions depend on how we view 
science and its development. One way to view science—let’s call 
it the traditional view—is as the continual accumulation of 
knowledge and the building of increasingly precise theories. In 
this view, a scientific theory is a model of the world that reflects 
what is actually in nature. New observations and experiments 
result in gradual adjustments to theories. Over time, theories get 
better, giving us a more accurate picture of the physical world.

In the twentieth century, a different view of scientific knowledge 
began to develop. A book by Thomas Kuhn (1922–1996), 
published in 1962 and entitled The Structure of Scientific 
Revolutions, challenged the traditional view. Kuhn’s ideas came 
from his study of the history of science, which, he argued, does not 
support the idea that science progresses in a smooth, cumulative 
way. According to Kuhn, science goes through fairly quiet periods 
that he called normal science. In these periods, scientists make 
their data fit the reigning theory, or paradigm. Small inconsistencies 
are swept aside during periods of normal science. However, when 
too many inconsistencies and anomalies develop, a crisis emerges. 
The crisis brings about a revolution and a new reigning theory. 
According to Kuhn, the new theory is usually quite different from 

the old one; it not only helps us to make sense of new or 
anomalous information, but it also enables us to see accumulated 
data from the past in a dramatically new way.

Kuhn further contended that theories are held for reasons 
that are not always logical or unbiased, and that theories are not 
true models—in the sense of a one-to-one mapping—of the 
physical world. Because new theories are often so different from 
the ones they replace, he argued, and because old theories 
always make good sense to those holding them, they must not 
be “True” with a capital T; otherwise “truth” would be constantly 
changing.

Kuhn’s ideas created a controversy among scientists and 
science historians that continues to this day. Some, especially 
postmodern philosophers of science, have taken Kuhn’s ideas 
one step further. They argue that scientific knowledge is 
completely biased and lacks any objectivity. Most scientists, 
including Kuhn, would disagree. Although Kuhn pointed out that 
scientific knowledge has arbitrary elements, he also said, 
“Observation . . . can and must drastically restrict the range of 
admissible scientific belief, else there would be no science.” In 
other words, saying that science contains arbitrary elements is 
quite different from saying that science itself is arbitrary.

QUESTION In his book, Kuhn stated, “A new theory . . . is seldom 
or never just an increment to what is already known.” From your 
knowledge of the history of science, can you think of any examples 
that support Kuhn’s statement? Do you know of any instances in 
which a new theory or model was drastically different from the one it 
replaced?

Thomas S. Kuhn and Scientific Revolutions

 1.3 The Classification of Matter WATCH NOW!
KEY CONCEPT VIDEO 1.3

Classifying Matter
  Matter is anything that occupies space and has mass. Your desk, your 
chair, and even your body are all composed of matter. Less obviously, the air around you 
is also matter—it too occupies space and has mass. We call a specific instance of matter—
such as air, water, or sand—a substance. We classify matter according to its state (its 
physical form) and its composition (the basic components that make it up).

1.1 

Cc 
Conceptual 
Connection

 ANSWER NOW!LAWS AND THEORIES Which statement best explains the difference 
between a law and a theory?

(a) A law is truth; a theory is mere speculation.
(b) A law summarizes a series of related observations; a theory gives the underlying 

reasons for them.
(c) A theory describes what nature does; a law describes why nature does it.
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6 CHAPTER 1 Matter, Measurement, and Problem Solving

The States of Matter: Solid, Liquid, and Gas
Matter exists in three different states: solid, liquid, and gas. In solid matter, atoms 
or molecules pack closely to each other in fixed locations. Although the atoms and 
molecules in a solid vibrate, they do not move around or past each other. Conse-
quently, a solid has a fixed volume and rigid shape. Ice, aluminum, and diamond 
are examples of solids. Solid matter may be crystalline, in which case its atoms or 
molecules are in patterns with long-range, repeating order (Figure 1.2▼), or it may be 
amorphous, in which case its atoms or molecules do not have any long-range order. 
Table salt and diamond are examples of crystalline solids; the well-ordered geometric 
shapes of salt and diamond crystals reflect the well-ordered geometric arrangement 
of their atoms (although this is not the case for all crystalline solids). Examples of 
amorphous solids include glass and plastic. In liquid matter, atoms or molecules pack 
about as closely as they do in solid matter, but they are free to move relative to each 
other, giving liquids a fixed volume but not a fixed shape. Liquids assume the shape 
of their containers. Water, alcohol, and gasoline are all substances that are liquids at 
room temperature.

The state of matter changes 
from solid to liquid to gas with 
increasing temperature.

Glass and other amorphous solids 
can be thought of, from one point 
of view, as intermediate between 
solids and liquids. Their atoms 
are fixed in position at room 
temperature, but they have no 
long-range structure and do not 
have distinct melting points.

Crystalline Solid:
Atoms are arranged in a regular
three-dimensional pattern

Diamond
C (s, diamond)

▲ FIGURE 1.2 Crystalline 
Solid Diamond (first discussed 
in Section 1.1) is a crystalline 
solid composed of carbon atoms 
arranged in a regular, repeating 
pattern.

In gaseous matter, atoms or molecules have a lot of space between them and are free 
to move relative to one another, making gases compressible (Figure 1.3▶). When you 
squeeze a balloon or sit down on an air mattress, you force the atoms and molecules into 
a smaller space so that they are closer together. Gases always assume the shape and vol-
ume of their containers. Substances that are gases at room temperature include helium, 
nitrogen (the main component of air), and carbon dioxide.

Solid matter Gaseous matterLiquid matter

▲ In a solid, the atoms or molecules are fixed in place and can only vibrate. In a liquid, although the 
atoms or molecules are closely packed, they can move past one another, allowing the liquid to flow 
and assume the shape of its container. In a gas, the atoms or molecules are widely spaced, making 
gases compressible as well as fluid (able to flow).
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 1.3 The Classification of Matter 7

Classifying Matter by Composition: Elements, 
Compounds, and Mixtures
In addition to classifying matter according to its state, we classify it according to its com-
position, as shown in the following chart:

▲ FIGURE 1.3 The 
Compressibility of Gases Gases 
can be compressed—squeezed into a 
smaller volume—because there is so 
much empty space between atoms or 
molecules in the gaseous state.

A solid is not compressible. A gas is compressible.

Variable composition?

Heterogeneous Homogeneous

MixturePure Substance

CompoundElement

Uniform throughout?Separable into simpler
substances?No

No

NoYes

Yes

Yes

Matter

Helium Pure water Wet sand Tea with sugar
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8 CHAPTER 1 Matter, Measurement, and Problem Solving

The first division in the classification of matter is between a pure substance and a 
mixture. A pure substance is made up of only one component, and its composition is 
invariant (it does not vary from one sample to another). The components of a pure sub-
stance can be individual atoms or groups of atoms joined together. For example, helium, 
water, and table salt (sodium chloride) are all pure substances. Each of these substances is 
made up of only one component: helium is made up of helium atoms, water is made up of 
water molecules, and sodium chloride is made up of sodium chloride units. The composi-
tion of a pure sample of any one of these substances is always exactly the same (because 
you can’t vary the composition of a substance made up of only one component).

A mixture, by contrast, is composed of two or more components in proportions 
that can vary from one sample to another. For example, sweetened tea, composed pri-
marily of water molecules and sugar molecules (with a few other substances mixed in), is 
a mixture. We can make tea slightly sweet (a small proportion of sugar to water) or very 
sweet (a large proportion of sugar to water) or any level of sweetness in between.

We categorize pure substances themselves into two types—elements and 
compounds—depending on whether or not they can be broken down (or decomposed) 
into simpler substances. Helium, which we just noted is a pure substance, is also a good 
example of an element, a substance that cannot be chemically broken down into sim-
pler substances. Water, also a pure substance, is a good example of a compound, a 
substance composed of two or more elements (in this case, hydrogen and oxygen) in a 
fixed, definite proportion. On Earth, compounds are more common than pure elements 
because most elements combine with other elements to form compounds.

We also categorize mixtures into two types—heterogeneous and homogeneous—
depending on how uniformly the substances within them mix. Wet sand is a heterogeneous 
mixture, one in which the composition varies from one region of the mixture to another. 
Sweetened tea is a homogeneous mixture, one with the same composition throughout. 
Homogeneous mixtures have uniform compositions because the atoms or molecules that 
compose them mix uniformly. Heterogeneous mixtures are made up of distinct regions 
because the atoms or molecules that compose them separate. Here again we see that the 
properties of matter are determined by the atoms or molecules that compose it.

Classifying a substance according to its composition is not always obvious and 
requires that we either know the true composition of the substance or are able to test it 
in a laboratory. For now, we focus on relatively common substances that you are likely to 
have encountered. Throughout this course, you will gain the knowledge to understand 
the composition of a larger variety of substances.

All known elements are listed in 
the periodic table in the inside 
front cover of this book.

Separating Mixtures
Chemists often want to separate a mixture into its components. Such separations can 
be easy or difficult, depending on the components in the mixture. In general, mix-
tures are separable because the different components have different physical or chemi-
cal properties. We can use various techniques that exploit these differences to achieve 

 ANSWER NOW! 1.2 

Cc
Conceptual 
Connection

PURE SUBSTANCES AND MIXTURES In these images, a blue 
circle represents an atom of one type of element, and a red square represents an atom of 
a second type of element. Which image is a pure substance?

(a) (b) (c)  
None of the these

(d) 
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 1.4 Physical and Chemical Changes and Physical and Chemical Properties 9

separation. For example, we can separate a mixture 
of sand and water by decanting—carefully pour-
ing off—the water into another container. A 
homogeneous mixture of liquids can usually be 
separated by distillation, a process in which the 
mixture is heated to boil off the more volatile (easily  
vaporizable) liquid. The volatile liquid is then recon-
densed in a condenser and collected in a separate flask 
(Figure 1.4▲). If a mixture is composed of an insoluble solid 
and a liquid, we can separate the two by filtration, in which the 
mixture is poured through filter paper in a funnel (Figure 1.5▲).

Condenser

Distillation

Cooling
water out

Mixture
Pure
liquid

Cooling
water in

When a mixture of 
liquids with different 
boiling points is heated...

... the most volatile 
component boils first.

The vapor is then cooled and 
collected as pure liquid.

▲FIGURE 1.4 Separating Substances by Distillation 

Stirring rodWhen a mixture
of a liquid and a
solid is poured
through filter
paper...

... the filter paper
traps the solid.

The liquid component
passes through
and is collected.

Funnel

Filtration

Water molecules change from liquid
to gaseous state: physical change.

H2O(l) H2O(g)

▲ FIGURE 1.6 Boiling, a Physical 
Change When water boils, it 
turns into a gas but does not alter 
its chemical identity—the water 
molecules are the same in both the 
liquid and gaseous states. Boiling is a 
physical change, and the boiling point 
of water is a physical property.

▲ FIGURE 1.5 Separating 
Substances by Filtration 

 
1.4

 Physical and Chemical 
Changes and Physical and 
Chemical Properties

Every day we witness changes in matter: ice melts, iron rusts, gasoline burns, fruit rip-
ens, and water evaporates. What happens to the molecules or atoms that compose these 
substances during such changes? The answer depends on the type of change. Changes 
that alter only state or appearance, but not composition, are physical changes. The 
atoms or molecules that compose a substance do not change their identity during a physi-
cal change. For example, when water boils, it changes its state from a liquid to a gas, but 
the gas remains composed of water molecules, so this is a physical change (Figure 1.6▲).
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